Holy Chapter 6

Emil Straschil

ETH Zurich

2025

Proof Systems

Proof System

A **proof system** is a quadruple $\Pi = (S, P, \tau, \phi)$

- *S* is a set of *statements*.
- P is a set of proofs.
- $\tau: S \to \{0,1\}$ is the *truth function*. A statement $s \in S$ is *true* if $\tau(s) = 1$.
- $\phi: S \times P \to \{0,1\}$ is the *verification function*. $p \in P$ is a *valid* proof for $s \in S$ if $\phi(s,p) = 1$.

Efficently Computable

 τ does **not** need to be efficiently computable, but ϕ needs to be. This means that you cannot use τ in your definition of ϕ .

Specifically, saying something like

$$\phi(s,p)=1 \iff \tau(s)=1$$

is not allowed.

Proof System Properties

Soundness

A proof system is *sound* if no false statement has a proof. This means that for some statement $s \in S$

$$\exists p \in P \text{ with } \phi(s,p) = 1 \implies \tau(s) = 1$$

Completeness

A proof system is *complete* if every true statement has a proof. This means that for all $s \in S$

$$\tau(s) = 1 \implies \exists p \in P \text{ with } \phi(s, p) = 1$$

You can use those statements to prove the properties.

Proof System Example

We define the proof system $MYSAT_k$

- S is the set of all prop. logic formulas with variables X_0, X_1, \dots, X_k
- $P = \{0,1\}^k$ (the set of bitstrings of length k+1)
- $\tau(F) = 1$ if the formula is satisfiable
- $\phi(F, b) = 1$ if F is true under the interpretation $X_0 = b_0, X_1 = b_1, \dots, X_k = b_k$

For example, for $MYSAT_2$: $F = X_0 \land (X_1 \lor X_2) \in S$ and $b = 101 \in P$ and we have $\phi(F,b) = 1$

Logic

Some words:

- Syntax is what symbols (and how) we can use
- Semantics is how the formula can be interpreted
- Free symbols need to be defined by the interpretation
- Semantics define if an interpretation has the truth value *true* of *false*. We write $\mathcal{A}(F)=1/0$

Model

 \mathcal{A} is a *model* for F if it is suitable for F and $\mathcal{A}(F)=1$.

Hello Chapter 2

Basically all logics contain the usual symbols and rules we know from Chapter 2. We also re-use the definitions.

- \bullet \vee , \wedge , \neg , \rightarrow
- tautology, satisfiable, ...
- distributivity, de-morgan, commutativity, ...
- ...

Useful Lemma

Lemma 6.3

The following statement are equivalent:

- **1** $\{F_1, F_2, \dots, F_k\} \models G$
- **2** $(F_1 \wedge F_2 \wedge \cdots \wedge F_k) \rightarrow G$ is a tautology
- **3** $\{F_1, F_2, \dots, F_k, \neg G\}$ is unsatisfiable.

This means instead of needing to prove (1) or (2) we can also show (3). You will learn about *resolution calculus* soon, which let's us prove statements of the form (3).

Calculi

Calculus

A calculus is a finite set of derivation rules.

For example, a derivation rule could be:

$$A \wedge B \vdash_R A$$

Derivations are purely syntactic. If the derivation rule $A \wedge B \vdash A$ does not exist in the calculus, you cannot use it.

Calculi Properties

Correctness

A derivation rule \vdash_R is *correct* if

$$F \vdash_R G \implies F \models G$$

Soundness

A calculus K is *sound* if every derivation rule is correct:

$$F \vdash_{K} G \implies F \models G$$

Completeness

A calculus *K* is *complete* if every logical consequence can be derived.

$$F \models G \implies F \vdash_K G$$

Derivation Example

Say we have the rules:

$$F \vdash_1 F \land F$$
$$\{F, G\} \vdash_2 F \to G$$

Now we could derive from $\{A\}$:

$$A \vdash_1 A \wedge A$$
$$\{A, A \wedge A\} \vdash_2 A \to (A \wedge A)$$

Normal Forms

DNF

A formula is in disjunctive normal form if it is of the form

$$(X_{11} \wedge \cdots \wedge X_{1k}) \vee \cdots \vee (X_{m1} \wedge \cdots \wedge X_{ml})$$

CNF

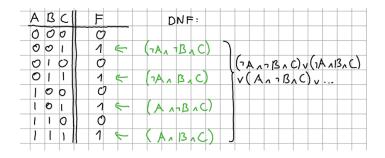
Α

formula is in conjunctive normal form if it is of the form

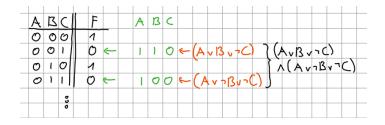
$$(X_{11} \vee \cdots \vee X_{1k}) \wedge \cdots \wedge (X_{m1} \vee \cdots \vee X_{ml})$$

Note that $(A \lor B) \equiv (A) \lor (B)$ is in CNF and DNF.

DNF



CNF



Exercise 1 - Proof Systems

11.4 Combining Proof Systems (*)

(8 Points)

Let

$$\Sigma = (S, P, \tau, \phi)$$

be a complete and sound proof system.

a) Define \mathcal{P}' and ϕ' so that

$$\Sigma' = (S \times S \times S, P', \tau', \phi')$$

is a complete and sound proof system (and prove it!), where

$$\tau'((s_1, s_2, s_3)) = 1 \iff$$
 at least 2 among $\tau(s_1), \tau(s_2), \tau(s_3)$ are equal to 1.

b) Let

$$\overline{\Sigma} = (S^2, \overline{P}, \overline{\tau}, \overline{\phi})$$

be a complete and sound proof system with

$$\overline{\tau}((s_1, s_2)) = 1 \iff$$
 exactly 1 of the statements is true in Σ ,
that is, $\tau(s_1) = 1$ or $\tau(s_2) = 1$, but not both. (1)

Define \mathcal{P}^* and ϕ^* so that $\Sigma^* = (\mathcal{S}, \mathcal{P}^*, \tau^*, \phi^*)$ is a complete and sound proof system (and prove it!), where

$$\tau^*(s) = 1 \iff \tau(s) = 0.$$

Solution 1a

a) Let $\mathcal{P}' = \{1, 2, 3\} \times \{1, 2, 3\} \times \mathcal{P} \times \mathcal{P}$ and let

$$\phi'\big((s_1,s_2,s_3),(i,j,p,p')\big)=1 \iff i\neq j \text{ and } \phi(s_i,p)=1 \text{ and } \phi(s_j,p')=1.$$

To prove completeness, suppose that $\tau'(s_1,s_2,s_3)=1$. This means that at least two s_i,s_j out of s_1,s_2,s_3 are true. By completeness of Σ there exist p and p' in P such that $\phi(s_i,p)=\phi(s_j,p')=1$. This means that, with the given definition of ϕ' , the 4-tuple (i,j,p,p') is a valid proof for (s_1,s_2,s_3) in Σ' .

To prove soundness, suppose that for some $(s_1,s_2,s_3)\in\mathcal{S}^3$ and some $(i,j,p,p')\in\mathcal{P}'$ we have

$$\phi'((s_1, s_2, s_3), (i, j, p, p')) = 1.$$

Then, by soundness of Σ , since $\phi(s_i,p)=1$ and $\phi(s_j,p')=1$ we get that s_i and s_j are true in Σ , which means that, since $i\neq j$, at least two out of s_1,s_2,s_3 are true in Σ , and by definition of τ' the statement (s_1,s_2,s_3) is true in Σ' .

Solution 1b

b) If there are no true statements in Σ , then the solution is trivial: simply define a proof set \mathcal{P}^* with a single element, and the verification function ϕ^* evaluates to true for each statement in \mathcal{S} and the only proof in \mathcal{P}^* . Therefore, we can assume that \mathcal{S} contains at least one true statement. Let $\mathcal{P}^* = \mathcal{S} \times \mathcal{P} \times \overline{\mathcal{P}}$ and let

$$\phi^*\big(s,(s',p',\overline{p})\big)=1\iff \phi(s',p')=1 \text{ and and } \overline{\phi}\big((s',s),\overline{p}\big)=1.$$

To prove completeness of Σ^* , suppose that $\tau^*(s)=1$ which means $\tau(s)=0$. By assumption, there exists an element $s'\in \mathcal{S}$ with $\tau(s)=1$. By completeness of Σ we can find a proof $p'\in \mathcal{P}$ such that $\phi(s',p')=1$. Furthermore, since $\tau(s)=0$, this means that $\overline{\tau}(s',s)=1$, because only s' is true in Σ . By completeness of $\overline{\Sigma}$ we find a proof \overline{p} with $\overline{\phi}((s',s),\overline{p})=1$. Therefore (s',p',\overline{p}) is a valid proof of s in Σ^* with the above definition of ϕ^* . To prove soundness of Σ^* , suppose that $\phi^*(s,(s',p',\overline{p}))=1$. This means 1) $\overline{\phi}((s',s),\overline{p})=1$, which by soundness of $\overline{\Sigma}$ this means that exactly one among s',s is true in Σ and 2) $\phi(s',p')=1$, which by soundness of Σ implies that $\tau(s')=1$. These two facts together imply that s is false in Σ . Therefore $\tau^*(s)=1$.

Exercise 2 - CNF and DNF

You are given the following formula F (only as a function table).

- Find an equivalent formula G in disjunctive normal form.
- 2 Find an equivalent formula H in conjunctive normal form.

Α	В	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Solution 2

We find the DNF by taking all the 1-rows. We "and" the variables and "or" those subformulas:

$$(\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land C) \lor (A \land B \land C)$$

We find the CNF by taking all the 0-rows. For each row, we negate the variables, "or" them and "and" those subformulas:

$$(A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (\neg A \lor B \lor C) \land (\neg A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C)$$

Exercise 3 - Deriving Formulas

Consider the following calculus:

$$\varnothing \vdash_{1} F \lor (F \to G)$$

$$\{F \lor G, \neg F\} \vdash_{2} G$$

$$\{F \to G, G \to H\} \vdash_{3} F \to H$$

$$\{F, \neg G\} \vdash_{4} F \to G$$

Formally derive $A \to C$ from $\{A, \neg B\}$ in this calculus. Hint: use every rule exactly once.

Solution 3

$$(2) \neg B$$

$$(3) \{(1),(2)\} \vdash_4 A \to B$$

$$(4) \varnothing \vdash_1 B \lor (B \to C)$$

(5)
$$\{(4),(2)\} \vdash_2 B \to C$$

(6)
$$\{(3),(5)\} \vdash_3 A \to C$$