Logic Continued Continued

Emil Straschil

ETH Zurich

2025

Resolution Calculus - Clauses

Clause

A clause is a set of literals.

Here are some clauses:

$$\{A, B, C\}, \{A, \neg B\}, \varnothing$$

A clause is *satisfied* by a truth assignment if at least one of its literals is true. This means a clause "represents" a logical OR.

$$\{A, \neg B, C\} \sim (A \vee \neg B \vee C)$$

The empty clause is unsatisfiable. "One of the literals has to be true", but there are none.

Resolution Calculus - Sets of Clauses

Clause Set

A set $M = \{K_1, \dots, K_m\}$ of clauses is satisfied by a truth assignment if **all** of its clauses are satisfied.

So a set of clauses "represents" the logical AND. For example

$$\{\{A, B\}, \{\neg A, C\}\}$$

Can be satisfied by setting A = 1, B = 0, C = 1.

The empty set of clauses is a tautology. "All have to be true", and none are all of none.

Resolution Calculus - Resolvents

Resolvent

Let $K_1 = \{A, L_1, \dots L_k\}$ and $K_2 = \{\neg A, I_1, \dots I_l\}$. Then the *resolvent* of K_1 and K_2 is $\{L_1, \dots, L_k, I_1, \dots, I_l\}$.

Resolution Calculus

The resolution calculus consists of one rule:

$$\{K_1,K_2\}\vdash_{res}K$$

if K is a resolvent of K_1, K_2 . This rule is sound.

Resolution Calculus - Examples

Take:

$$L = \{A, B, C\}, M = \{\neg A, B\}, N = \{\neg C\}$$

Then we can resolve:

$$\begin{aligned} \{L, M\} &\vdash_{res} \{C\} \\ \{L, N\} &\vdash_{res} \{A, B\} \\ \{N, \{C\}\} &\vdash_{res} \varnothing \end{aligned}$$

Resolution Calculus - Usecase

Theorem 6.6

A set of formulas M is unsatisfiable exactly if $\mathcal{K}(M) \vdash_{Res} \varnothing$.

Here $\mathcal{K}(M)$ is simply the representation of M as a set of clauses.

Remember Lemma 6.3?

The following statements are equivalent:

- $(F_1 \wedge F_2 \wedge \cdots \wedge F_k) \rightarrow G \text{ is a tautology}$
- $\{F_1, F_2, \dots, F_k, \neg G\}$ is unsatisfiable.

We can prove (3) using the resolution calculus! (And therefore also the other statements.)

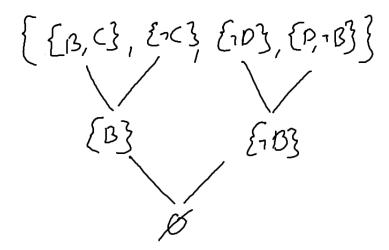
How this usually goes

- They give you some statement / formula
- You transform that statement / formula to a CNF
- You use resolution calculus

Useful Tricks:

- Showing F is valid (tautology) is the same as showing $\neg F$ is unsatisfiable.
- Use Lemma 6.3
- Don't do a truth table if there are more than 3 variables! There is always some easy way (De-Morgan!?) to get to CNF!

Rare Proof-By-Picture Usecase



Exercise (Exam HS18)

(*) Let $F:=((A \to B) \to C) \lor (C \leftrightarrow \neg A)$. Find an equivalent formula in CNF (no justification is necessary).

(*) Let $G := ((A \lor B) \to (B \land C)) \lor ((A \lor B) \land (A \lor \neg C)) \lor (A \land B)$. Using the resolution calculus, prove that G is **valid**. (5 Points)

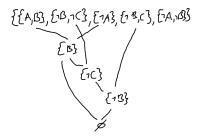
https://exams.vis.ethz.ch/exams/d4dxjyo0.pdf

Solution

For the first one, the (minimal) solution is $A \vee C$, there are many others. You can find it quickly by doing a truth table.

For the second one we use De-Morgan and other rules to transform $\neg G$ into:

$$(A \vee B) \wedge (\neg B \vee \neg C) \wedge (\neg A) \wedge (\neg B \vee C) \wedge (\neg A \vee \neg B)$$



Since $\neg G$ is unsatisfiable, G is a tautology.

Rectified Form

Rectified Form

A formula is in *rectified form* if no variable is both unbounded and free and all bound variables are distinct.

We can easily transform a formula into rectified form by renaming the bound variables. For example:

$$\forall x \exists y (P(x) \land Q(y)) \land R(x,y)$$

becomes

$$\forall u \exists v (P(u) \land Q(v)) \land R(x, y)$$

You are only allowed to rename variables bound by a quantifier!

Prenex Form

Prenex Form

A formula is in *prenex form* if all the quantifiers are in front of one formula without quantifiers.

So for example, this formula is **not** in prenex form:

$$\forall x P(x) \land P(x)$$

But we can transform it to:

$$\forall u(P(u) \land P(x))$$

How To Prenex Form

- Rename all variables bound by quantifiers
- ② Use Lemma 6.7 to bring the quantifiers to the front

Lemma 6.7. For any formulas F, G, and H, where x does not occur free in H, we have

- 1) $\neg(\forall x \ F) \equiv \exists x \ \neg F;$
- 2) $\neg(\exists x \ F) \equiv \forall x \ \neg F;$
- 3) $(\forall x \ F) \land (\forall x \ G) \equiv \forall x \ (F \land G);$
- 4) $(\exists x \ F) \lor (\exists x \ G) \equiv \exists x \ (F \lor G);$
- 5) $\forall x \, \forall y \, F \equiv \forall y \, \forall x \, F;$
- 6) $\exists x \exists y F \equiv \exists y \exists x F;$
- 7) $(\forall x \ F) \land H \equiv \forall x \ (F \land H);$
- 8) $(\forall x \ F) \lor H \equiv \forall x \ (F \lor H);$
- 9) $(\exists x \ F) \land H \equiv \exists x \ (F \land H);$
- 10) $(\exists x \ F) \lor H \equiv \exists x \ (F \lor H).$

Exercise (Exam HS19)

(*) Find a formula in the prenex normal form which is equivalent to the folloing formula: $\neg \forall x \big(P(x) \vee \neg Q(y) \big) \wedge \exists y \big(P(x) \vee Q(y) \big). \tag{4 Points}$

Solution

$$\neg \forall x (P(x) \lor \neg Q(y)) \land \exists y (P(x) \lor Q(y))$$

$$\equiv \neg \forall u (P(u) \lor \neg Q(y)) \land \exists v (P(x) \lor Q(v))$$

$$\equiv \exists u \neg (P(u) \lor \neg Q(y)) \land \exists v (P(x) \lor Q(v))$$

$$\equiv \exists u (\neg (P(u) \lor \neg Q(y)) \land \exists v (P(x) \lor Q(v)))$$

$$\equiv \exists u (\exists v (P(x) \lor Q(v)) \land \neg (P(u) \lor \neg Q(y)))$$

$$\equiv \exists u \exists v ((P(x) \lor Q(v)) \land \neg (P(u) \lor \neg Q(y)))$$